
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Software Quality Metrics Calculations for Java

Programming Learning Assistant System

Khin Khin Zaw

 Department of Computer Engineereing
and Information Technology

Yangon Technological University

Yangon, Myanmar

thihakhinkhin85@gmail.com

Nobuo Funabiki

Department of Electrical and

Communication Engineering
Okayama University

Okayama, Japan

funabiki@okayama-u.ac.jp

Hsu Wai Hnin

 Department of Computer Engineereing
and Information Technology

Yangon Technological University

Yangon, Myanmar

hsuwaihnin007@gmail.com

Khin Yadanar Kyaw

Department of Computer Engineering
and Information Tetchnology

Yangon Technological University

 Yangon, Myanamar

kk.yadanar@gamil.com

Abstract—A Web-based Java Programming Learning Assistant

System (JPLAS) has been proposed to assist Java

programming educations in universities. In the code writing

problem, the correctness of an answer code from a student is

verified by running the test code on JUnit. Besides, their

quality should be measured using the metrics to assess them.

The currently using plugin could only be measured on eclipse

for offline answering in JPLAS. To calculate the metrics and

implement in web-based JPLAS, there are several equations

that have been reported. In this paper, we find the proper

equations to calculate the metrics that provide the same results

as from Eclipse plugin. The application results for 45 source

codes showed that the adopted metrics equations provide the

same results as the plugin.

Keywords—JPLAS, JUnit, test code, code writing problem

I. INTRODUCTION

Java is a secure, portable, and platform independent

programming language. Java engineers have been demand.

Thus, Java is taught in many universities and colleges.

To assist Java educations, Java programming learning

assistant system (JPLAS) has been developed. In JPLAS, the

student can solve the exercise problems both on online and

offline using Eclipse. JPLAS provides different types of

Java programming exercises to cover the different learning

levels. The code writing problem asks a student to write a

whole source code that passes the given test code on JUnit.

Besides, software metrics should be measured to assess the

quality of the answer code [1].

Software metrics can evaluate the software product

under developments, which gives a vision on the quality to

make a whole process more successful. These metrics are

called software quality metrics or product metrics. In the

code writing problem, seven quality metrics can be

measured for assessment of the code. They include NOC -

number of classes, NOM – number of methods, CC -

cylomatic complexity, NBD – nested block depth, LCOM-

the lack of cohesion, MLOC - method lines of code and

TLOC – total lines of code [2]. They can be used for the size

estimation, the complexity evaluation, and the maintenance

of the code.

The currently using plugin can be used on Eclipsed to

measure the metrics. Eclipse is used when the students solve

the problems on offline. To measure the software metrics of

a code, the equations to calculate them must be

implementation in the JPLAS server. Unfortunately, there

are several different equations to calculate some quality

metrics. We need to find proper equation to calculate the

metrics that provide the same results from Eclipse plugin.

In this paper, first, equations to calculate each metric

are surveyed. Then, the proper one is selected by comparing

the results with Eclipse plugin for 45 answer codes. The

results showed that the calculated metrics by the selected

equations are equal to those of Eclipse plugin.

II. REVIEW OF JPLAS

In this section, we review JPLAS.

A. JPLAS

In JPLAS, Ubuntu is used as the operating system that is
running on VMware. For web server, Tomcat is used to run
HTML, JSP and servlets. HTML- hypertext Markup
Language is the language to create the webpages. JSP is a
script combined with Java code and it is embedded to
HTML. Servlet is a small Java program that runs on web
server. For database, MySQL is used for managing the data.

JPLAS implements supporting functions for teachers and
students. In the teacher function, the teacher can show the
problems to students by uploading them to the server. In the
student function, the student can answer the problems from a
Web browser and submit them to the server on online.

Besides, they can answer the problems using Eclipse on
offline after receiving the problems by e-mail or
downloading the problems from JPLAS, and submit the
answer via email.

B. Exercies Problems in JPLAS

 In JPLAS, four types of problems are provided. The three
problems are the types of fill-in-blank problems to
understand the grammar and reading studies. The last

Identify applicable funding agency here. If none, delete this text box.

mailto:thihakhinkhin85@gmail.com
mailto:hsuwaihnin007@gmail.com

problem is for the code writing study. In this paper, the code
writing problem is focused for the study of software metrics.

C. Fill-in-blank Problem

In this problem, the students need to fill the correct

answers in blanks for a given Java code. The answer is

marked by comparing with their original elements in the

code. Thus, the original element must be unique correct

answer for each blank. The blanks elements are identifiers,

variable, reserved words and control symbols.

D. Value Trace Problem

This problem is another type of element fill-in-blank

problem that keeps the process of filling and marking the

answer. It questions a student about actual values of

important variables in the code. The students need to fill the

correct values of variables in blanks. In this problem, the

output data of variables from the code execution is blanked.

The output data may contain one or more values. It blanks

the output data line by line.

E. Statement Fill-in-blank Problem

In this problem, the students need to fill the whole

statement in a blank for a give Java code. The answer is

marked by using the test code on JUnit as the code writing

problem.

F. Code Writing Problem

In this problem, the students need to write the whole

code as the information given in test code. Then, the answer

code is tested through the test code on JUnit as test driven

development method (TDD). Besides, their quality is

accessed by measuring the seven quality metrics on Eclipse

plugin.

G. JUnit

It is an open-source Java framework for unit testing on

Java programming language and adopted in JPLAS. It is

important in development of TDD - test driven

development. Test code is implemented on JUnit.

Although, test code is a test code programming language, it

is rather simple for the Java programmers. This reason is

that JUnit has been designed for Java programming

language. In JUnit, one test can be performed by using one

method in the JUnit library. In the code writing problem, the

method whose name starts with ‘assert’ is used to check the

execution results by comparing with the expected method

[3].

H. TDD Method

In the TDD method, the following process can be done.

1) The source code must be prepared first to write test

code from them. Thus, the test code includes the

information on model source code, it will be tested in

later.

2) Then, the answer code is written and tested it on

JUnit through test code.

3) The source code can be re-factored until passing

through the test code. Thus, the re-factoring process of

a source code becomes easy, because the modified code

can be tested instantly.

I. Metric Plugin

Metric plugin for Eclipse is commonly used open

source software plugin for metrics calculation. This plugin

can measure the various metrics on source code and their

results are shown by number in metric view. This plugin is

used to measure software metrics to assess the quality of the

code for the code writing problem [4][5].

III. SOFTWARE METRICS

Software metrics are the measurement and prediction

of software products, which are essential resources for a

project and products relevant for software evolutions.

Measurements can be used throughout the software project

for quality control by comparing the current measurements

with past measurements for similar projects.

A. Overview of Metrics

There are many metrics that can be categorized into

process and product metrics. Besides, due to the great

interest in the use of object oriented languages, many object

oriented design metrics has been proposed. Product metrics

measure size, complexity, quality, and reliability of software

product. Process metrics measure the various characteristics

of the software development process. Object-oriented

metrics measure the different aspects of object-oriented

design, including complexity, cohesion, and coupling.

Among them, product metrics and object-oriented metrics

measure the quality of the code.

B. Product Metrics

Product metrics are known as quality metrics. They

help improving the quality of the different system

components, and comparisons between existing systems.

Various kinds of product metrics have been proposed. They

include reliability metrics, functionality metrics,

performance metrics, usability metrics, cost metrics, size

metrics, complexity metrics and style metrics. They are used

to measure the properties of the software. Among them,

some quality criteria can be used to predict a certain quality

of the software [6] and they are as follows:

 NOC - number of classes and DIT - depth of

inheritance are measured to assess maintainability

and reusability of the program.

 LOC- lines of code is measured to assess the size of

the code.

 CC - cyclomatic complexity is measured to assess

reliability of the program.

C. Object- Oriented Metrics

Object-oriented designs are more beneficial in software

development environment. Object-oriented metrics are used

to measure properties of object oriented designs. The object-

oriented metrics measure on class and its design viz;

localization, encapsulation, inheritance, polymorphism, and

object abstraction techniques, which make the class unique.

The object oriented metrics are defined as follows:

 WMC - Weighted Methods Per Class

 DIT - Depth of Inheritance Tree

 NOC - Number of Children

 CBO - Coupling between Objects

 RFC - Response for a Class

 LCOM - Lack of Cohesion in Methods

IV. CALCULATION OF SEVEN METRICS

Seven quality metrics are adopted for the code writing

problem in JPLAS. They are as the followings:

 NOC - number of classes

 NOM - number of methods

 CC - cyclomatic complexity

 LCOM - lack of cohesion in method

 NBD - nested block depth

 MLOC - method lines of code

 TLOC- total lines of code

The equations of CC and LCOM have many variations,

whereas other five metrics have a unique one. In this paper,

firstly, all the equations are surveyed. Then, proper

equations are selected to calculate them.

A. Number of Classes (NOC)

NOC measures the number of classes within the

application package. It is a measure of how many subclasses

are going to inherit the methods in the parent class. If a class

has many subclasses, it is regarded as the bad design. The

lower value of NOC helps maintainability and complexity of

codes.

B. Number of Methods (NOM)

NOM measures the number of methods within classes.

The number of methods that are local to the class and only

those methods can be measured.

C. Cyclomatic Complexity (CC)

CC measures the structural complexity of a procedure

by counting the number of independent paths in a method.

The paths represent the number of decision points in the

code, which include if, while, do-while, for, switch-case-

defaults, try-catch finally. The goal of CC is to evaluate the

testability and maintainability of a software module [8].

The original complexity is calculated as follows:

 CC (1)

Where: CC = cyclomatic complexity

 E = the number of edges of the graph

 N = the number of nodes of the graph

 Then, the improve complexity is defined as the

followings [9]:

1) If the source codes contain no decision points, their

complexity would be 1 since there is only a single path

through the code.

2) If the code has a single IF statement containing a

single condition, there would be two paths through the

code, one path for TRUE and one path for FALSE.

 In above conditions, CC is calculated as follows:

 CC= E - N + 2P (2)

where:

 P = the number of connected components

3) An alternate function is used when the cyclomatic

complexity is applied to several subprograms at the

same time.

 CC= E - N + P (3)

The following example code contains a single IF

statement. Thus, it contains the two paths to evaluate the

path as TRUE of FALSE.

1. public class Circle{

2. public static int minFunction(int n1,int n2){

3. int min;

4. if(n1>n2)

5. min=n2;

6. else

7. min=n1;

8. return min;

9. }

10. }

Fig.1 Example code single If Statement

Firstly, the statements are transformed into a graph,

where every piece of a statement is represented as a node and

their flows (sequence of execution of statements) are

represented as the edges. For the single program, P is always

equal to 1 since it has a single exit point. The cyclomatic

complexity may be applied to several subprograms at the

same time, where P will be equal to the number of programs.

Figure 2 shows the flow chart of the source code containing

single IF statements.

In this example, there are seven nodes, seven edges

and one connected components. Then, CC= 7-7+2×1=2 is

calculated by equation (2).

D. Lack of Cohesion in Methods (LCOM)

LCOM measures the cohesiveness of a class. It

represents the difference between two methods whose

similarity is zero or not. LCOM can judge the cohesiveness

among the class methods. There are several LCOM metrics.

The LCOM takes its values in the range 0 to 1.

 If the two methods share at least one field, Q is

increased by one. Otherwise, Q is increased by one.

It is noted that P and Q are initialized by 0. LCOM

is calculated on each pair of metrics as follows

[10]:

 LCOM = (P > Q)? (P - Q) : 0 (4)

Fig.2 Data flow diagram for source code with single IF statement

 LCOM 1: A low value indicates the high

coupling between methods. This also indicates

the potentially high reusability and good class

design. A high LCOM indicates that a class

shall be considered for good design. LCOM = 0

is not a strong evidence that a class enjoys

cohesiveness.

 LCOM 2: This is an improved version of

LCOM 1.

 LCOM = 1 -
𝑠𝑢𝑚(𝑚𝐴)

𝑚∗𝑎
 (5)

Where: m = number of methods in class

 a = number of attributes in class

 mA = number of accessing times of

attributes among the methods

 LCOM 3: A completely new expression for

cohesion is proposed by Herderson-Sellers, that is

called LCOM* [11].

 LCOM =
(

1

a
 ∑ μ (Aj)a

j=1)− m

1 - m
 (6)

 Where : 𝜇 (𝐴𝑗) = number of accessing times of

attributes among the methods.

The following example code shows the accessing of

attributes (member variables) among the methods. It

contains two member variables: radius and colour, and three

methods: getRadius, getColor and getData. In this example,

radius is accessed three times by getRadius and getData.

color is accessed one time by getColor.

By equation (4), LCOM is calculated on the number of

accessing times of attributes among the methods. The results

is 0 because the value of Q is greater than P where P=0 and

Q=4. Then, by equation (5), LCOM is calculated by using

the number of methods, attributes and the number of

accessing times of attributes. The result is 0.4 where m=3,

a=2 and mA=4.

1. public class Circle{

2. private double radius;

3. private String color;

4. public Circle (){

5. radius = 1.0;

6. color = red;

7. }

8. public double getRadius () {

9. return radius;

10. }

11. public String getColor (){

12. return color;

13. }

14. public double getArea (){

15. return 3.14*radius*radius;

16. }

17. }

Fig.3 Example code for method accessing attributes

 Fig.4 shows the diagram for the methods that accessing

the attributes. By equation (6), LCOM is calculated by using

the number of methods, attributes and the number of

accessing times of attributes. LCOM is 0.5 where m=3, a=2

and 𝜇 (𝐴𝑗)=4 respectively by equation (6).

 According to the equation (4), LCOM is only 0 or 1.

According to equation and (5) and (6), LCOM decreases and

close to 0, when the accessing times of attributes are more.

On the other hand, LCOM increases and close to 1 when the

accessing times of attributes are less. The declared variables

should be accessed among the methods In this time,

equation (6) is selected by the calculation result that is same

with plugin in Section V.

Fig.4 Block diagram of code for methods accessing attributes

Enter two numbers

(n1,n2)

True
 n1>n2

 Start

min=n2 min=n1

min

End

False

getRadius
V1

V2 getColor

getArea

color

M1

M2

M3

radius

E. Nested Block Depth (NBD)

NBD represents the maximum nest depth in a method.

The nest depth is given by the number of statements of

blocks that are nested due to the use of control structure

(branches and loops).

F. Total lines of Code (TLOC)

TLOC measures the total number of lines in the source

code. It is calculated by counting on the executable lines,

comment and empty lines.

G. Methodl lines of Code (MLOC)

MLOC represents the total number of method lines in

method. It is calculated by counting on comments and

empty lines.

V. COMPARISON OF METRIC RESULTS

In this section, we evaluate the seven quality metrics

for the 45 source codes for five assignments from nine

students in [11]. The first assignments ask the concepts of

encapsulation, inheritance and polymorphism. The last two

assignments ask the algorithms using those concepts for

implementation it.

A. Calculated Metrics

Among the seven metrics, CC and LCOM have

several equations to calculate them. For CC, the three

equations (1), (2) and (3) are used. For LCOM, equation (6)

is used.

B. Comparison of Metrics Values

The metrics values of CC and LCOM for each code

are compared between the results by Eclipse plugin and

those by the adopted equations to find the proper equations

that give the same results. Other values represent the

number of classes, methods, branches, and lines of code,

which are unique. There is no equation for other metrics

values. It can easily be calculated by counting the number of

classes, methods, branches and lines of code as described in

section IV- A, B, E, F, G. In this paper, the plugin result is

represented as T1 and the equation result is represented as

T2.

Tables 1-5 show the calculated metrics values of seven

metrics for each code. NOC, NOM, NBD, TLOC and

MLOC are calculated by counting the number of classes,

methods, branches and lines in a code manually. CC is

calculated by using Equation (1) (2) and (3). LCOM is

calculated by Equation (6) for each code. Then, the values

are compared between the plugin and calculated results.

In each assignment, the values NOC, NOM, NBD,

TLOC and MLOC are same between T1 and T2. Besides for

CC are the same values between them. The values of LCOM

are slightly varied between T1 and T2 because of the

difference of significant digits. Thus, the adopted equations

and the counted number for them are the same as those in

Eclipse plugin. In assignment 1, 2 and 3, they don’t need the

conditions or branches (loops) to implement the concepts of

OOP: encapsulation, inheritance and polymorphism. Thus,

their CC and NBD are always 1 by both T1 and T2. In

assignment 4 and 5, it needs the conditions or branches

(loops) to implement the algorithms using the OOP concepts.

In assignment 4, its CCs are 2-3 and NBD is 1-3. In

assignment 4, its CCs are 2-4 and NBD is 1-3. The values

are varied among the codes depending on the student’s

implementation on code.

TABLE I. COMPARISON OF METRIC VALUES FOR ASSIGNMENT 1

 Assignment 1

NOC NOM MLOC TLOC

T1 T2 T1 T2 T1 T2 T1 T2

S1 1 1 6 6 8 8 26 26

S2 1 1 6 6 8 8 26 26

S3 1 1 6 6 8 8 26 26

S4 1 1 6 6 8 8 26 26

S5 1 1 6 6 8 8 27 27

S6 1 1 6 6 8 8 26 26

S7 1 1 6 6 8 8 26 26

S8 1 1 6 6 8 8 26 26

S9 1 1 6 6 8 8 26 26

 NBD CC LCOM

 T1 T2 T1 T2 T1 T2

S1 1 1 1 1 0.5 0.5

S2 1 1 1 1 0.5 0.533

S3 1 1 1 1 0.5 0.533

S4 1 1 1 1 0.5 0.533

S5 1 1 1 1 0.7 0.667

S6 1 1 1 1 0.5 0.533

S7 1 1 1 1 0.7 0.667

S8 1 1 1 1 0.6 0.6

S9 1 1 1 1 0.7 0.667

TABLE II. COMPARISON OF METRIC VALUES FOR ASSIGNMENT 2

 Assignment 2

NOC NOM MLOC TLOC

T1 T2 T1 T2 T1 T2 T1 T2

S1 2 2 5 5 5 5 28 28

S2 2 2 5 5 5 5 24 24

S3 2 2 5 5 5 5 24 24

S4 2 2 5 5 5 5 24 24

S5 2 2 12 12 15 15 48 48

S6 2 2 6 6 9 9 28 28

S7 2 2 5 5 5 5 24 24

S8 2 2 5 5 5 5 22 22

S9 2 2 9 9 11 11 40 40

 NBD CC LCOM

 T1 T2 T1 T2 T1 T2

S1 1 1 1 1 0.5 0.5

S2 1 1 1 1 0.5 0.5

S3 1 1 1 1 0.5 0.5

S4 1 1 1 1 0.5 0.5

S5 1 1 1 1 0.7 0.68

S6 1 1 1 1 0.5 0.5

S7 1 1 1 1 0.7 0.667

S8 1 1 1 1 0.5 0.5

S9 1 1 1 1 0.7 0.667

TABLE III. COMPARISON OF METRIC VALUES FOR ASSIGNMENT 3

 Assignment 3

NOC NOM MLOC TLOC

T1 T2 T1 T2 T1 T2 T1 T2

S1 1 1 3 3 3 3 14 14

S2 1 1 3 3 3 3 12 12

S3 1 1 3 3 3 3 12 12

S4 1 1 3 3 3 3 12 12

S5 1 1 3 3 9 9 21 21

S6 1 1 3 3 3 3 12 12

S7 1 1 3 3 3 3 12 12

S8 1 1 3 3 6 6 15 15

S9 1 1 3 3 3 3 12 12

 NBD CC LCOM

 T1 T2 T1 T2 T1 T2

S1 1 1 1 1 0 0

S2 1 1 1 1 0 0

S3 1 1 1 1 0 0

S4 1 1 1 1 0 0

S5 1 1 1 1 0 0

S6 1 1 1 1 0 0

S7 1 1 1 1 0 0

S8 1 1 1 1 0 0

S9 1 1 1 1 0 0

TABLE IV. COMPARISON OF METRIC VALUES FOR ASSIGNMENT 4

 Assignment 4

NOC NOM MLOC TLOC

T1 T2 T1 T2 T1 T2 T1 T2

S1 1 1 5 5 29 29 50 50

S2 1 1 4 4 37 37 53 53

S3 1 1 4 4 37 37 53 53

S4 1 1 3 3 7 7 19 19

S5 1 1 4 4 20 20 36 36

S6 2 2 9 9 26 26 55 55

S7 1 1 5 5 26 26 44 44

S8 1 1 4 4 24 24 40 40

S9 1 1 5 5 39 39 60 60

 NBD CC LCOM

 T1 T2 T1 T2 T1 T2

S1 3 3 4 4 0.4 0.4

S2 3 3 3 3 0.6 0.667

S3 3 3 3 3 0.6 0.667

S4 1 1 2 2 0.5 0.5

S5 2 2 2 2 0.8 0.8

S6 2 2 2 2 0.45 0.45

S7 2 2 2 2 0.2 0.2

S8 2 2 3 3 0.6 0.6

S9 3 3 3 3 0.5 0.5

TABLE V. COMPARISON OF METRIC VALUES FOR ASSIGNMENT 5

 Assignment 5

NOC NOM TLOC MLOC

T1 T2 T1 T2 T1 T2 T1 T2

S1 3 3 5 5 10 10 34 34

S2 2 2 5 5 28 28 49 49

S3 2 2 5 5 28 28 49 49

S4 2 2 4 4 9 9 26 26

S5 2 2 5 5 17 17 39 39

S6 2 2 9 9 26 26 54 54

S7 2 2 6 6 36 36 59 59

S8 2 2 5 5 33 33 55 55

S9 2 2 13 13 45 45 87 87

 NBD CC LCOM

 T1 T2 T1 T2 T1 T2

S1 2 2 2 2 0.5 0.5

S2 2 2 2 2 0.8 0.8

S3 2 2 2 2 0.8 0.8

S4 1 1 2 2 0.5 0.5

S5 2 2 2 2 0.9 0.9

S6 2 2 2 2 0 0

S7 2 2 3 3 0.1 0.1

S8 2 2 3 3 0.6 0.6

S9 3 3 2 2 0.5 0.5

VI. CONCLUSIONS

In this paper, we surveyed equations for calculating

software quality metrics, verified through comparison

between T1 and T2 and found the equations that provide the

same values as the Eclipse plugin through applications to 45

source codes. In future works, we will implement the

equations in JPLAS and evaluate the quality of source codes

from students on real time.

REFERENCES

[1] N. Funabiki, Y. Matsushima, T. Nakanishi and N. Amano, “A Java

programming learning assistant system (JPLAS) using test-driven
development method,” IAENG Int. J. Computer Science, vol. 40, no.
1, pp 38-46, 2013.

[2] K. K. Zaw and N. Funabiki, “A design-aware test code approach for
code writing problem in Java programming learning assistant
system,” Int. J. Spaced-based and Situated Computing, vol. 7, no.3,
pp.145-154, 2017.

[3] K. Beck, Test-driven development: by example, Addison-Wesley,
2002.

[4] Metric Plugin, http:// metrics.sourceforge.net.

[5] T. G. S. Filo and M. A. S. Bigonha, “A catalogue of thresholds for
object-oriented software metrics,” in Proc. Softeng, pp. 48-55. 2015.

[6] S. M. Jamali, “Object oriented metrics,” Software.
Assurance Technology Center (SATC), 2006.

[7] R. D. Neal “The measurement theory validation of proposed
object-oriented software metrics,” Dissertation, Virginaia
Commonwealth University, 2008.

[8] Cyclomatic Complexity,
http://www.projectcodemeter.com/cost_estimation/help/GL_c
yclomatic.htm.

[9] K. K. Zaw and N. Funabiki, “A design-aware test code approach for
code writing problem in Java programming learning assistant
system,” Int. J. Space-Based and Situated Computing, vol. 7, no.3,
2017.

[10] Lack of cohesion, http://www.tusharma.in/technical.

[11] K. K. Zaw, W.Zaw, N. Funabiki, Wen-Chung Kao, “An informative
test code approach in code writing problem for three object-oriented
programming concepts in Java programming learning assistant
system”, IAENG International Journal of Computer Science, vol.46,
no.3, pp.445-453, 2019.

http://www.projectcodemeter.com/cost_estimation/help/GL_cyclomatic.htm
http://www.projectcodemeter.com/cost_estimation/help/GL_cyclomatic.htm
http://www.tusharma.in/technical

